Ab initio STUDY OF POINT DEFECTS IN 2D GRAPHENE LAYER

Author:

HUSSAIN FAYYAZ1,IMRAN MUHAMMAD2,SIDDIQA AISHA1,KHALIL RANA M. ARIF1,RANA ANWAR MANZOOR1,SATTAR M. ATIF3,NIAZ NIAZ AHMAD1,ULLAH HAFEEZ4,AHMAD NADEEM5

Affiliation:

1. Materials Simulation Research Laboratory (MSRL), Department of Physics, Bahauddin Zakariya University, Multan, Pakistan, 60800, Pakistan

2. Department of Physics, G.C.U. Faisalabad, Pakistan

3. Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

4. Bio-Photonics Research Laboratory, Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

5. Institute of Advanced Materials, Bahauddin Zakariya University, Multan, Pakistan, 60800, Pakistan

Abstract

With a hexagonal (honeycomb) network of mono-layered carbon atoms, graphene has demonstrated outstanding electronic properties. This work describes the impact of deliberately introduced single, double and triple carbon vacancies in grapheme monolayer. In addition, these carbon vacancies were then substituted with gold atoms and their influence on the electronic properties of the two-dimensional (2D) graphene layers was investigated. In this regard, a first principle calculation was performed to examine electronic properties and formation energy of 2D graphene layer by applying density functional theory (DFT). Introduction of such defects appeared to increase the stability of the graphene sheet as confirmed by formation energy calculations. Moreover, decrease of formation energy was noticed to be significant with an increase in the number of defects. Band structure calculations described the shifting of localized states from valance to conduction bands which caused the transformation of semiconducting behavior into metallic one on the filling of carbon vacancies by gold atoms. Comparing this behavior with that of partial density of states (PDOS) it was noted that a lot of states existed in the valance band in the case of C-vacancies yielding charge free region around the vacancy. On the other hand, filling of C-vacancies by gold generated a large number of energy states in the conduction band illustrating the accumulation of charges near gold atom. Width of the peak across the Fermi level indicated the accumulative energy of electron to be almost 0.15[Formula: see text]eV. These calculated DOS and PDOS demonstrated metallic like behavior of the graphene monolayer with typical defect states.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3