MESOSCOPIC PATTERN FORMATION IN CATALYTIC PROCESSES BY AN EXTENSION OF THE MEAN FIELD APPROACH

Author:

MOLA E. E.1,IRURZUN I. M.1,VICENTE J. L.1,KING D. A.2

Affiliation:

1. INIFTA (CONICET, CIC, Univ. Nac. de La Plata), Sucursal 4, Casilla de Correo 16 (1900) La Plata, Argentina

2. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK

Abstract

For some years it has been known that a number of catalytic reactions, under specified steady operating conditions, exhibit oscillations, in the rate of product formation. These are often related to beautiful spatiotemporal patterns, including targets and spirals, on the metal surface. These examples of self-organizational phenomena have attracted considerable interest, because they are proving to be theoretically amenable. Here we review different approximations to model heterogeneous surface chemical reactions, which exhibit oscillatory behavior. A focal point is the use of a detailed knowledge of the dynamics of surface structural phase transition for modeling kinetic oscillations, which represent a severe test of our understanding of chemical processes at surfaces. Advantages and disadvantages of the Monte Carlo approach are presented to model heterogeneous oscillatory chemical reactions, with special emphasis if a Monte Carlo method is going to be applied to study the time evolution of a surface chemical reaction, as there should be a linear relationship between the time unit called the Monte Carlo step (MCS) and actual time. We conclude that special care must be taken when two or more processes are included in a simulation, because now overall MCS should be compatible with every individual process. The mean field approach (MFA) takes into account only reaction processes and completely neglects spatial correlation and fluctuations. Therefore, this approach is not adequate for describing the rich variety of spatial patterns that are experimentally observed. On the other hand, Monte Carlo approaches are severely limited by computational capabilities. To overcome MFA limitations we propose to extend the earlier work of King and coworkers [J. Chem. Phys.100, 14417 (1996)], which did not include spatial dependence, by adding diffusion processes and gas global coupling to the coupled reaction equations. The extended MFA can now be used as a new tool for the analysis of pattern formation in surface chemistry.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3