APPLICATION POTENTIAL OF RESPONSE SURFACE METHOD ON ELECTRO DISCHARGE MACHINING OF AA6061–CENOSPHERE AMCs PREPARED BY COMPOCASTING METHOD

Author:

DEY ABHIJIT1,PANDEY KRISHNA MURARI2,RAI RAM NARESH3,KHAN AKHTAR4,DAS ANSHUMAN5

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Srinagar, 190006, India

2. Department of Mechanical Engineering, National Institute of Technology, Silchar, Assam, 788010, India

3. Department of Mechanical Engineering, National Institute of Technology, Agartala, Tripura, 799055, India

4. Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kurnool, 518007, India

5. Department of Mechanical Engineering, DIT University, Dehradun, Uttarakhand, 248009, India

Abstract

Cenosphere fly ash particles are incorporated into AA6061 alloys with different concentrations ranging from 0[Formula: see text]wt.% to 10[Formula: see text]wt.% using a modified semi-solid metal processing technique. X-ray diffraction patterns were recorded to analyze the morphology of the aluminum-based metal matrix composites (AMCs). The major diffraction peaks of Al, SiO2, Al2O3 and Fe2O3 are distinctly identified which revealed the presence of cenosphere particles and their integrity within the matrix is preserved. The high-resolution optical micrograph identifies the homogeneous distribution and uniform dispersion of the particles. Machinability of the prepared AMCs was investigated by electro discharge machining (EDM) using response surface methodology (RSM). Face-centered CCD of RSM was considered to design the number of experimental runs required. ANOVA was used to explore the influence of selected process parameters and their interactions on the performance characteristics of the systems by developing a second-order quadratic mathematical model for all the responses. Pulse on-time and pulse current were observed to be the most influencing independent variables of EDM system that affect the selected performance measures during spark erosion process. Finally, desirability function approach was employed to optimize the parameters. The optimal processing condition was identified as follows: pulse current: 6 A, pulse on-time: 1010[Formula: see text][Formula: see text]s, percentage of reinforcement: 2% and flushing pressure: 0.2 MPa. Very small percentages of deviation have been observed while comparing with the experimental results obtained for MRR (8.6%), TWR (10.3%) and SR (2.18%).

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3