MODELING AND OPTIMIZATION OF PROCESS PARAMETERS OF THE PISTON ALLOY-BASED COMPOSITE PRODUCED BY FSP USING RESPONSE SURFACE METHODOLOGY

Author:

AKBARI M.1,ASADI P.2,ALIHA M. R. M.3,BERTO F.4

Affiliation:

1. Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran 1435761137, Iran

2. Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin 3414896818, Iran

3. Welding and Joining Research Center, School of Industrial Engineering, Iran University of Science and Technology (IUST), Narmak,16846-13114, Tehran, Iran

4. Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 16846-13114, Norway

Abstract

In this paper, A356/B4C composites were fabricated using the friction stir processing (FSP) method. The process’s input parameters, including rotational and transverse speed, were optimized using the response surface methodology (RSM). Three factors and three levels with nine experimental runs made up the design of the experiments. An analysis of variance (ANOVA) was employed to determine whether the constructed model was adequate at a 95% confidence level. This study found that transverse speed was the most critical variable affecting the composites’ silicon (Si) particle size, UTS, and force. The findings demonstrate that the Si particle size of the parent material and the dispersion quality of B4C particles in the aluminum matrix are considerably influenced by the FSP factors, such as rotating speed and transverse speed. Second, tests for tensile strength were conducted to examine the composites’ mechanical properties. Then, using a specially designed fixture to measure force during the process, the forces on the tool, which play a decisive role in determining the tool’s life, were measured in different input parameters. The findings demonstrate that FSP transforms the mechanism of the fracture from brittle to extremely ductile in composites from the as-received metal.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3