IMPROVEMENT OF WEAR RESISTANCE OF SHREDDER BLADES USED IN A REFUSE-DERIVED FUEL (RDF) FACILITY BY PLASMA NITRIDING

Author:

AYDIN HAKAN1ORCID,BOSTANCI FURKAN2

Affiliation:

1. Mechanical Engineering Department, Engineering Faculty, Bursa Uludag University, 16059 Gorukle-Bursa, Turkey

2. Tofas-Fiat, Turkish Automobile Factory Co., Bursa, Turkey

Abstract

Refuse-derived fuel (RDF) is a kind of renewable energy source to produce energy for replacement of fossil fuels. Aggressive working conditions in RDF facilities cause the shredder blades to wear out quickly. So, the purpose of this paper was to study the effect of plasma-nitriding process on wear resistance of shredder blades made of AISI D2 tool steel in the service condition of RDF facility. Shredder blades were commercially available from two different suppliers (A and B suppliers). These hardened shredder blades were plasma-nitrided in the mixed nitrogen and hydrogen atmosphere at a volume ratio of 3:1 at 450C for 12, 18 and 24[Formula: see text]h at a total pressure of 250 Pa. Characterisation of plasma-nitrided layers on the shredder blades was carried out by means of microstructure and microhardness measurements. Wear tests of plasma-nitrided shredder blades were performed under actual working conditions in the RDF facility. Wear analysis of these shredder blades was conducted using three-dimensional (3D) optical measuring instrument GOM ATOS II. The compositional difference of the shredder blades provided by A and B suppliers played an important role on the nitrided layer. The case depth of A-blades significantly increased with increasing plasma-nitriding time. However, the case depth of B-blades was fairly lower at the same nitriding time and only slightly increased with increasing plasma-nitriding time. Plasma-nitriding process significantly improved the surface hardness of the shredder blades. Maximum surface hardness values were achieved at nitriding time of 18 h for both blades. In this case, this increase in surface hardness values was above 100%. At nitriding time of 24[Formula: see text]h, the maximum surface hardness of A-blades significantly decreased, whereas this decrease in surface hardness of B-blades was the negligible value. The wear test results showed that plasma-nitriding process significatly decreased the wear of shredder blades; 18 h nitriding for A-blades and 24[Formula: see text]h nitriding for B-blades had better wear-reducing ability in the service condition of RDF facility. In these cases, the decreases in the total volume wear loss for A- and B-blades were 53% and 60%, respectively.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Reference29 articles.

1. Study on Heavy Metals Conversion Characteristics During Refused Derived Fuel Gasification Process

2. K. N. Sheth, in 9th Int. Conf. Engineering and Business Education (ICEBE) and 6th Int. Conf. Innovation and Entrepreneurship (ICIE) (2016), p. 176.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3