A NOVEL HYBRIDIZATION OF SEAGULL ALGORITHM AND COMBINED COMPROMISE SOLUTION (SOA–CoCoSo) IN DRILLING INVESTIGATION OF CARBON NANO-ONION-MODIFIED POLYMER COMPOSITES FOR STRUCTURAL APPLICATION

Author:

KESARWANI SHIVI1,VERMA RAJESH KUMAR1

Affiliation:

1. Materials & Morphology Laboratory, Mechanical Engineering Department, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, 273010, India

Abstract

Carbon nanomaterial (CNM)-reinforced polymer composite is broadly employed in emergent industrial needs due to advanced mechanical properties. In this research paper, a comparatively innovative integrated approach (SOA–CoCoSo) is proposed by using Principal Component Analysis (PCA)-based Combined Compromise Solution (CoCoSo) and Seagull Optimization Algorithm (SOA). This modified module is used in the drilling operation of zero-dimensional (0D) carbon nano-onion (CNO)-reinforced polymer (epoxy) composite. The desired machining performances, namely, surface roughness ([Formula: see text]), thrust force (Th), and Torque (Tr), are optimized to improve the quality and productivity concerns. The control of process constraints, i.e. the wt.% of nanomaterial ([Formula: see text]), spindle speed ([Formula: see text]), and feed rate ([Formula: see text]), was performed to achieve the desired objective value. The drilling experimentation was executed at three different levels of Box–Behnken Design (BBD). The objective function of PCA–CoCoSo was fed as input into the SOA. To acquire a better work efficiency, higher spindle speed, lower feed rate, and incremental wt.% of nanomaterial reinforcement are considered. The results demonstrated that the wt.% of CNO reinforcement and feed rate are the most influential factors for optimal machining performance results. The optimal constraints condition from the SOA–CoCoSo hybrid module is found at a combination of lower level of CNO wt.% (0.5[Formula: see text]wt.%) and feed rate (61[Formula: see text]mm/min) and high value of spindle speed (1500[Formula: see text]rpm). Also, the hybrid SOA–CoCoSo module shows a lesser amount of error percentage than the usual PCA–CoCoSo. The experiments were performed to confirm the feasibility of the suggested hybrid module for optimizing the varying machining parameters. The results indicated that the hybrid method is more efficient than the conventional method.

Funder

Uttar Pradesh Council of Science and Technology

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3