FABRICATION AND CHARACTERIZATION OF HYDROGEN SENSORS BASED ON TRANSFERRED GRAPHENE SYNTHESIZED BY ANNEALING OF Ni/3C-SiC THIN FILMS

Author:

KIM KANG-SAN1,CHUNG GWIY-SANG1

Affiliation:

1. School of Electrical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 680-749, Republic of Korea

Abstract

This paper presents the formation of graphene and its application to hydrogen sensors. In this work, the graphene was synthesized by annealing process of 3 C - SiC thin films with Ni transition layer. The Ni film was coated on a 3 C - SiC layer grown thermal oxided Si substrates and used extracts of the substrate's carbon atoms under rapid thermal annealing (RTA). Various parameters such as ramping speed, annealing time and cooling rate were evaluated for the optimized combination allowed for the reproducible synthesis of graphene using 3 C - SiC thin films. Transfer process performed by Ni layer etching in HF solution and transferred graphene onto SiO 2 shows the IG/ID ratio of 2.73. Resistivity hydrogen sensors were fabricated and evaluated with Pd and Pt nanoparticles in the room temperature with hydrogen range of 10–50 ppm. The response factor of devices with the Pd catalyst was 1.3 when exposed to 50 ppm hydrogen and it is able to detect as low as 10 ppm hydrogen at room temperature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3