EFFECT OF MACHINABILITY OF GNP–GFRP COMPOSITES ON TENSILE STRENGTH AND FATIGUE BEHAVIOR

Author:

TOPKAYA TOLGA1ORCID,ÇELİK YAHYA HIŞMAN1ORCID,KILICKAP EROL2ORCID

Affiliation:

1. Engineering and Architecture Faculty, Mechanical Engineering Department, Batman University, 72060 Batman, Turkey

2. Engineering Faculty, Department of Mechanical Engineering, Dicle University, Diyarbakır, Turkey

Abstract

The paper focuses on the cutting behavior of Glass Fiber Reinforced Polymer (GFRP) composites and GNP–GFRP composites that contain varying amounts of Graphene Nano Platelets (GNP). GFRP composites are increasingly being used in a variety of industrial applications due to their excellent mechanical properties, such as high strength, stiffness, and low weight. However, their machining and cutting behavior can be challenging due to the presence of the reinforcing fibers. Therefore, the study aims to investigate the machining behavior of GFRP composites and the effect of adding GNP on their cutting behavior. The effect of different parameters such as cutting speed, feed rate and reinforcement rate on cutting forces and delamination factor is investigated. In addition, the tensile strength and fatigue behavior of the composite materials with the best and worst delamination factors were also determined. Addition of up to 0.2 wt.% of GNP to GFRP composites resulted in an increase in cutting forces and delamination factor when drilling GFRP composites. While the cutting force and delamination factor decreased with the increase in cutting speed, the cutting force and delamination factor increased with the increase in the feed rate. Analysis of variance (ANOVA) was performed to determine the effects of drilling parameters and reinforcement ratio on cutting force and delamination factor according to full factorial experimental design. The most efficient factor on the cutting forces is found to be feed rate (84.97%), followed by the reinforced rate (6.48%) and cutting speed (6.13%). The most efficient factor on the delamination factor is determined to be feed rate for (44.49%), followed by the reinforced rate (29.20%) and cutting speed (21.73%).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3