INVESTIGATION ON THE MORPHOLOGY OF PRECIPITATED CHEMICALS FROM TE BUFFER ON SOLID SUBSTRATES

Author:

WANG HUABIN12,ZHANG LIJUAN12,ZHANG FENG1,AN HONGJIE3,CHEN SHIMOU12,LI HAI12,WANG PENG12,WANG XINYANG12,WANG YANG12,YANG HAIJUN12

Affiliation:

1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China

2. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China

3. Tianjin University of Science and Technology, Tianjin 300040, P. R. China

Abstract

Buffer is often involved in the biological studies on a surface with the scanning probe microscopy and the remnant of the salts of buffer may affect the correct interpretation of the experimental results. However, the knowledge on the performance of chemicals of buffer on a substrate is still very poor. TE solution (Tris– HCl , NaCl , and ethylene diamine tetraacetic acid (EDTA)) is a widely used buffer in stocking biological molecules. Herein, we report the performance of the precipitated chemicals from TE solution on two typical substrates with several commonly used sample preparation methods. The results showed that the chemicals in TE solution could self-organize into parallel nanofilaments on hydrophobic highly oriented pyrolitic graphite (HOPG) surface by blotting the shortly incubated solution droplet from the substrate or by drying the diluted solution droplet naturally. In contrast, no such special structures were observed on hydrophilic mica using the same methods. By imaging in TE solutions, no special structures were found on either the HOPG or the mica. Moreover, the effects of the concentration of chemicals of TE buffer on the morphology of precipitated chemicals were also investigated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3