Affiliation:
1. College of Computing Science & Information Technology, Delhi Road, NH 24, Bagadpur, Uttar Pradesh 244001, India
2. Department of Physics, Faculty of Engineering, Teerthanker Mahaveer University, Delhi Road, NH 24, Bagadpur, Uttar Pradesh 244001, India
Abstract
With the advent of the semiconductor age and later the age of nanotechnology, the thin film and coating field have established their importance and reasons for doing in-depth studies. Different sophisticated physical techniques, like chemical vapor deposition, sputtering, evaporation, molecular beam epitaxy, etc., and the conventional spin coating or dip coating, have been employed to get thin films of specific materials/compounds. Of all these, physical techniques are particularly preferred for their ability to develop good quality thin film with high uniformity. In the field of experimental material science, there are tremendous efforts in thin film development and the study of their different properties. The properties include topological, electrical, electronic, optical, or other. At the same time, though less explored, there are developments of theoretical understanding regarding the basic mechanism of thin film growth by specific growth mechanism. In doing this, the basic mechanism of thin film growth has been categorized into different broad classes with specific features. The main features include the time dependence of interface width and values of different scaling exponents. Apart from these, studies also addressed different morphological, optical, or electrical properties of the as-grown thin films of specific material. This paper gathers the existing literature that reports the simulation-based theoretical studies related to thin film growth by different algorithms like random deposition, ballistic deposition, random deposition with surface relaxation, or their different combinations. Not only that, but the paper also summarizes different reports related to the simulation-based prediction of the material properties. As the topic is relatively new, the collection of reports added in the last 20 years has been considered. The paper has different sections. Section 1 gives basic introductory ideas related to thin film development and its properties. Sections 2 and 3 , respectively, deal with the basics of different existing models and the basic steps involved in the simulation. Section 4 gathers the related results reported by various researchers, followed by a short discussion and final concluding remarks. Undoubtedly, this paper is the first review work in this field and thus will serve as an invaluable source of information for future workers.
Funder
Teerthanker Mahaveer University
Publisher
World Scientific Pub Co Pte Ltd