PREPARATION AND PROPERTIES OF A NANO-TiO2 COMPOSITE PHOTOCATALYST SUPPORTED BY NATURAL QUARTZ

Author:

WANG XINRU123,WANG XUAN1,DING HAO1,MA RUIXIN4,TU YU1,LI WEI5

Affiliation:

1. Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, P. R. China

2. Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China

3. National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, P. R. China

4. School of Chemical Safety, North China Institute of Science and Technology, Langfang, Hebei Province 065201, P. R. China

5. Beijing Building Materials Academy of Sciences Research, Beijing 100041, P. R. China

Abstract

The goal of this paper is to improve the technical level of preparing composite photocatalysts with SiO2-supported nano-TiO2, expand the selection range of SiO2 carriers, reduce expenses and understand the influence of SiO2 crystallization behavior. Natural quartz (Q/SiO2) powder was used as a carrier to prepare a Q/SiO2-TiO2 composite photocatalyst by hydrolyzing a butyl titanate solution and performing high-temperature calcination of the hydrolysate. The performance, morphology, structure and mechanism were tested and characterized. In addition, the as-prepared photocatalyst was compared with other amorphous SiO2 carrier composite photocatalysts. The results showed that the Q/SiO2 surface of Q/SiO2-TiO2 contained a uniform load of TiO2 with a 26.98% proportion. Anatase-type TiO2 was mainly present, and the size was 5–10[Formula: see text]nm. Moreover, Q/SiO2 and TiO2 were firmly combined in the form of Si–O–Ti bonds between the interfaces. The degradation rate of Q/SiO2-TiO2 to methyl orange solution was 99.59% under UV irradiation for 60[Formula: see text]min, which was equivalent to that of pure nano-TiO2. The degradation performance remained stable after four cycles. Compared with other amorphous SiO2 carriers, Q/SiO2 exhibited a higher load of TiO2. Furthermore, Q/SiO2 played a more significant role in inhibiting the phase transition of TiO2 to rutile and improving the photocatalytic performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

science and technology research research project of colleges and universities in hebei province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3