HIGH-TEMPERATURE TRIBOLOGICAL BEHAVIORS OF TiNi/Ti2Ni ALLOYED LAYER ON SURFACE OF Ti6Al4V ALLOY

Author:

WANG ZHENXIA1,WU HAIRUI1,LIN NAIMING1,YAO XIAOHONG1,HE ZHIYONG1,LIU XIAOPING1

Affiliation:

1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China

Abstract

Plasma surface alloying (PSA) technique was employed with nickel as incident ions to prepare the TiNi/Ti2Ni alloyed layer on surface of Ti6Al4V. High-temperature friction and wear performance of TiNi/Ti2Ni alloyed layer and the Ti6Al4V substrate were evaluated at 500[Formula: see text]C. The results indicated that the TiNi/Ti2Ni alloyed layer exhibited superior high-temperature wear performance. The variations of friction coefficient were the same rule but wear rate was lower compared to Ti6Al4V substrate. The wear mechanism of TiNi/Ti2Ni alloyed layer was mainly slight abrasion and the Ti6Al4V substrate showed abrasion and oxidation wear. The friction coefficient of the TiNi/Ti2Ni alloyed layer decreased from 0.90 to 0.50 with the increase of temperature from room temperature to 500[Formula: see text]C.

Funder

the Natural Science Foundation of Shanxi Province, China

the National Natural Science Foundation of China

Research Project Supported by Shanxi Scholarship Council of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3