Affiliation:
1. School of Mechanical and Electrical Engineering, Putian University, Fujiang Province, Putian 351100, P. R. China
2. School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China
Abstract
The oxidation behavior of B-bearing high-speed steel was studied at 923[Formula: see text]K. The results showed that the as-cast microstructure of 1.0 wt.%B high-speed steel was composed of pearlite + ferrite + M7(C, B)3 + M2(B, C). When the boron content increased, the microstructure gradually changed into martensite + retained austenite + netlike M2(B, C) + M[Formula: see text](C, B)6 + M7(C, B)3. The cyclic oxidation of B-bearing high-speed steel at K followed parabolic rule. The unit area mass gain of 1 wt.%B high-speed steel was 4.2 g/m2 after 923 K/250 h oxidation, and the unit area mass gain of 3 wt.%B high-speed steel was only 3.5 g/m2. The oxidation of boron element formed B2O3, which was mainly enriched at the interface of the oxide film/matrix. B2O3 flowed in the oxide film at high temperature and was easy to fill the defect. B2O3 was easy to form B2O3-SiO2 borosilicate with SiO2. The more boron content was, the more favorable it was to form B2O3-SiO2 borosilicate oxide layer rich in B2O3 and the more favorable it was to spread in the oxide film, so that the oxidation resistance of B-bearing high-speed steel could be remarkably improved.
Funder
National Natural Science Foundation of China
Hebei Science and Technology Major Project
Natural Science Foundation of Fujian Province
Science and Technology Project of Putian
Publisher
World Scientific Pub Co Pte Lt
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献