INFLUENCE OF B4C AND TiN ON THE MICROSTRUCTURE AND WEAR BEHAVIOR OF FRICTION STIR PROCESSED AA7075 SURFACE COMPOSITE

Author:

FATHIMA H. Z. AFRA1,KEVIN C. K.1,KISHORE K. S.1,SUDHA J.1ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai 600025, Tamilnadu, India

Abstract

Friction stir processing (FSP), which was the advancement in the friction stir welding technique, is thought to be an economic approach to alloying in the solid state that can be used to make composites. In this study, FSP was carried out to produce AA7075 (B4[Formula: see text]iN) composite by varying the composition of the reinforcement particles. Microstructural analysis was carried out and the homogenous distribution of the reinforced particles on the surface of AA7075 alloy was ensured. X-ray diffraction studies were carried out to analyze the phases present after fabricating the hybrid surface composites. Microhardness test was performed on the specimens before and after the fabrication process. Grain refinement in the friction stir processed zones was evidently seen in the optical microstructures. The combined effect of the ceramic powders and grain refinement led to increase in the microhardness in the hybrid surface composites compared with the base AA7075 plate. A 33.87% increase in microhardness was observed in the sample AA7075 reinforced with 75% B4C and 25% TiN. Wear testing was carried out at various loads (5, 10, 15 and 20 N) and at different sliding velocities (300, 350, 400 and 450 rpm) and the track distance was maintained at 1000 m. It was observed that the highest wear rate is [Formula: see text] cm3/Nm for the base plate AA7075 and the sample AA7075 reinforced with 50% B4C and 50% TiN shows the lowest wear rate of [Formula: see text] cm3/Nm. It is observed that the addition of B4C and TiN has resulted in a significant improvement in the wear resistance of the AA7075 alloy.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3