STUDIES ON EFFECT OF Nb SEGREGATION AND FORMATION OF SECONDARY PHASES OF Ni–Cr–Mo CLAD ON 316L SUBSTRATE BY COLD METAL ARC TRANSFER PROCESS

Author:

EVANGELINE A.1,SATHIYA P.1,ARIVAZHAGAN B.2

Affiliation:

1. Department of Production Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India

2. MDTD, IGCAR, Kalpakkam 603102, Tamilnadu, India

Abstract

In current scenario, there is an ever increasing demand for alloys with increased wear resistance under severe working conditions. Ni–Cr–Mo alloy is suitable for surface modification and repairing applications. The Ni–Cr–Mo alloy clad region had cellular-dendrite with Laves phase and complex nitrides/carbides (MX) distributed in the interdendritic regions. Microindentation hardness variation was observed on the interdendritic regions as compared to that of dendritic regions. A new solidification path is confirmed through EDS analysis. Ni, Fe and Cr segregate to the dendritic area, whereas Nb and Mo segregate to the interdendritic region. Ni–Cr–Mo microstructure evolution was studied by optical microscope (OM), scanning electron microscope (SEM) and atomic force microscope (AFM). The Laves and G phases were identified in the Ni–Cr–Mo clad region, confirming superior resistance to corrosion. Pin-on-disc abrasion wear technique confirmed that cladding with low base metal dilution possesses better wear resistance. The mechanism of wear depends on load applied and sliding time. EBSD analysis revealed random texture and grains have same crystallographic orientation across the interface boundary line due to epitaxial growth.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3