SURFACE STRENGTHENING AND FRICTION WEAR OF THE INNER WALL OF LIQUID SODIUM HYDROSTATIC BEARING

Author:

YANG HUI1,YANG XUEFENG1,CAO JINLONG1,HOU QIMIN1,CHENG JIAN2,WANG SHOUREN1,GAO YALONG1

Affiliation:

1. College of Mechanical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China

2. College of Mechanical Engineering, Hubei University of Technology, Hubei 430068, P. R. China

Abstract

Sodium hydrodynamic bearings are parts which are easy to wear in order to improve the wear resistance of the inner wall and prolong the service life. In this paper, high-temperature element W was used as a variable to prepare cobalt-based alloy coatings with different contents of W. By testing the hardness and anti-wear performance of the coatings at high temperature, the microstructure and wear mechanism of the coatings were further analyzed in combination with crystal phase diagram and microscopic morphology diagram. The results show that the coefficient of friction of cobalt-based alloy coating decreases with the increase of W content under high-temperature dry rubbing, while the wear quantity increases with the increase of W content. Under high-temperature oil lubrication, the coefficient of friction of cobalt-based alloy coating is the lowest when the W content is 12%. The wear amount of cobalt-based alloy coating decreases with the increase of W content, and the wear mechanism changes from adhesion wear to abrasive wear with the increase of W content.

Funder

National Natural Science Foundation of China

Postdoctoral Science Foundation of China

Key Research and Development Program of Shandong Province, China

Major Basic Research Projects of Shandong Natural Science Foundation

Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program

experts from Taishan scholars and youth innovation in science & technology support plan of Shandong Province University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3