Affiliation:
1. Nano Optoelectronics and Research Laboratory, School of Physics, Universiti Sains Malaysia (USM), 11800 Minden, Penang, Malaysia
Abstract
Copper aluminium oxide (Cu–Al2O3) films were synthesized on Si(111) substrates through RF magnetron sputtering by using the layer stacking technique. Cu and Al2O3 targets were used to deposit Cu and Al2O3 thin films under Ar atmosphere, respectively and the deposited films were then annealed under N2 environment at 350[Formula: see text]C, 450[Formula: see text]C and 550[Formula: see text]C for 6[Formula: see text]h. The structural properties of the films were investigated by using X-ray diffraction (XRD) while the surface morphology and topography of the deposited films were examined through Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX) and Atomic Force Microscopy (AFM). XRD analysis revealed the existence of multiple phases of CuO, Al2O3 and CuAl2O4 in the deposited films on Si(111) substrates. As a result of the annealing effect, the peak intensities of CuO, Al2O3 and CuAl2O4 were found to be increased along with the shifting of peak positions. Williamson–Hall (WH) analysis was also implemented to analyze the structural properties such as crystallite size, stress, strain, and energy density. Based on the three models used in WH analysis, the changes in the crystallite size and strain of the films were indicated to be anomalous with the changes in the annealing temperature. Moreover, the strain of films was also showed to be changed from compressive strain into tensile strain. The FESEM results also indicated the formation of various surface morphologies under various annealing temperatures whereas EDX analysis showed an increased atomic percentage of Cu, Al, and O due to the effect of increase in annealing temperature. The AFM analysis showed that the surface roughness of the deposited films increased with the increase in the annealing temperature.
Publisher
World Scientific Pub Co Pte Lt
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics