A NOVEL FABRICATION METHOD OF TWO-DIMENSIONAL NANO-MOLD BY COMBINING ULTRAVIOLET LITHOGRAPHY WITH WET ETCHING TECHNOLOGY

Author:

CHENG E12,TANG SUZHOU3,LIU LINGPENG4,ZOU HELIN4,ZHANG ZHENGYAN1

Affiliation:

1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China

2. Research Institute for Structure Technology of Advanced Equipment, Hebei University of Technology, Tianjin 300401, P. R. China

3. School of Economics and Management, Tianjin University of Science and Technology, Tianjin 300222, P. R. China

4. Key Laboratory for Micro/Nano Technology and Systems of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China

Abstract

Nano-fluidic devices have great potential in the applications of biology, chemistry, and medicine. However, their applications have been hampered by their expensive or complicated fabrication methods. We present a new and simple approach to fabricate low-cost two-dimensional (2D) nano-mold based on ultraviolet (UV) lithography and wet etching. The influence of UV lithography parameters on the width dimension of AZ5214 photoresist was investigated. With the optimized parameters of UV lithography, the width dimension of photoresist patterns had sharply decreased from microscale to nano-scale. At the same time, the influences of etching time on the over-etching amount of SiO2 film and nano-mold depth were also analyzed for further reducing the width of nano-mold. In addition, the effect of photoresist mesas deformation on the nano-mold fabrication was also studied for improving the quality of nano-mold. By the proposed method, trapezoid cross-sectional 2D nano-mold with different dimensions can be obtained for supporting varied applications. The minimum nano-mold arrays we fabricated are the ones with the dimensions of 115[Formula: see text]nm in top edge, 284[Formula: see text]nm in bottom edge, and 136[Formula: see text]nm in depth. This method provides a low-cost way to fabricate high-quality and high-throughput 2D nano-mold.

Funder

Hebei Province Higher School Science and Technology Research Youth Found

Young Teacher Innovation Fund of TUST

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3