EFFECT OF Ni ON THE ELECTRICAL AND MICROSTRUCTURAL PROPERTIES OF NANOCRYSTALLITES Fe2O3/TiO2 SYSTEM

Author:

SOBHY MAGED S.1

Affiliation:

1. Materials Science Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

Abstract

Nominal compositions of Ni x Ti 1-x Fe 2 O 5-δ (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) were prepared by a solid state reaction using stoichiometric amounts of Fe 2 O 3/ TiO 2 system and NiO as a dopant. The effects of small substitution of Ni ions on the electrical and structural properties were studied for the above system. The X-ray diffraction patterns revealed that the ferroelectric phase of iron titanate and the spinel ferrite phase of Ni -ferrite having a single phase at x = 0 and 1, respectively. The substitution of Ni ions increases the average value of lattice constant aav. Solid–solid interaction took place between the ternary oxides at 1200°C for 4 h yielding a new phase of NiTiO 3. The presence of the three phases was confirmed by X-ray diffraction technique. The resultant compositions have nanocrystallites with average crystalline size "D av " in the range 100–300 nm. The DC electrical resistivity ρ, Curie temperature TC and activation energies for electric conduction around TC region increase as Ni ion substitution increases. The ferrite samples have a semiconductor behavior where electrical resistivity ρ decreases on increasing temperature. The activation energy for electrical conduction was affected by both the ratio "ferroelectric/ferrite" and the position of the Curie temperatures in the compositions depending on the ( Ni , Ti ) to Fe ratio.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3