Affiliation:
1. Research Laboratory for Surface Science, Faculty of Science, Okayama University, Okayama 700-8530, Japan
2. Matsushita Research Institute Tokyo Inc., 3-10-1 Higashimita, Tama-ku, Kawasaki 214-8501, Japan
3. Ion Engineering Co., Hirakata, Osaka 573-0128, Japan
Abstract
Several methods have been tried to prepare clean surfaces of 4H–SiC(0001)Si and C, whose surface atomic, or electronic, structures have been studied by LEED (low energy electron diffraction) STM (scanning tunneling microscopy) and AES (Auger electron spectroscopy). Some sequential chemical treatments, for example, agitation in an organic solvent and dipping in HF solution, followed by the heating of a SiC wafer in UHV (ultrahigh vacuum, below 10-7 Pa) at 950°C, gave either a [Formula: see text] or 3×3 superstructure, observed by LEED (low energy electron diffraction), for the SiC(0001) Si or C surface, respectively. An elongated NH4F treatment followed by a heat treatment in UHV at ~950°C gave a rather flat region to be investigated by STM, where a [Formula: see text] superstructure for the SiC(0001) Si surface has been observed. In the case of metal (Ni) atom deposition on SiC(0001) [Formula: see text] and (0001)C(3×3) surfaces, AES and LEED analysis have clarified that deposited metal atoms form islands up to ~5 Å. However, Ni atoms dispersed uniformly at the very beginning of the deposition, which means that the Ni overlayer piles up in layer followed by island growth mode.
Publisher
World Scientific Pub Co Pte Lt
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献