ELECTROMAGNETIC PROPERTIES, FORMING LIMIT DIAGRAMS AND FRACTURE TOUGHNESS OF LAMINATED Al/Fe2O3 COMPOSITES

Author:

KHAYOON ALDRIASAWI SALMAN1ORCID,AMEEN NIHAYAT HUSSEIN2ORCID,PITHODE KAMYA3ORCID,MCMAHON STACY4ORCID

Affiliation:

1. Mechanical Engineering Department, Kut Technical Institute, Middle Technical University, Baghdad, Iraq

2. College of Agriculture, University of Kirkuk, Iraq

3. Department of Computer Science and Engineering, IES College of Technology, IES University, Bhopal, India

4. Department of Mechanical Engineering, Technical University of Denmark. Lyngby, Denmark

Abstract

In this study, electrophysical, electromagnetic and mechanical properties, fracture toughness and forming limit diagram (FLD) of Al base composite samples have been studied experimentally. All samples have been fabricated via accumulative roll bonding (ARB) process. To this purpose, AA1060/ Fe2O3 composite strips with thickness of 1 mm have been fabricated with up to eight ARB passes at 300[Formula: see text]C. In this study, magnetic Al/Fe2O3 composites reinforced with 0, 5% and 10 wt.% of Fe2O3 particles have been manufactured via ARB. The microstructure was studied by optical microscopy (OM). Also, by decreasing the thickness of layers at higher number of passes (increasing the plastic strain), the bonding quality among the layers was improved. Scanning electron microscopy (SEM) fracture surface morphology of samples after the tensile test showed that by increasing the passes, the fracture style (mode) converted to shear ductile at higher ARB passes. So, deep dimples shrink slowly and their number and depth decreased relative to the annealed sample. As the criterion of formability, the area under the FLDs dropped sharply after the first pass and then improved by increasing the passes. Results of fracture test have shown that the value of fracture toughness has been enhanced continually to the maximum value of 34.3 MPam[Formula: see text] at the 8th pass.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3