EFFECTS OF POROUS g-C3N4 NANOSHEETS AND STEARIC ACID ON THE DURABILITY OF WATERBORNE ACRYLIC RESIN COATING

Author:

SUN CAIXIA1,DAI JINGJIE2,ZHANG HONGXIA1,WANG WEI1,GUO LIJUAN1,HOU CAIFENG1,ZHANG XIAOHUA1,FANG RANRAN1

Affiliation:

1. School of Intelligent Manufacturing and Control Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, P. R. China

2. School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong 266555, P. R. China

Abstract

Durability is a key factor to determine the service life of organic coating. The addition of nanomaterials can improve the mechanical properties and compactness of the organic coatings. As a kind of nanomaterial, g-C3N4 has lamellar structure and can be excited by visible light. At the same time, its cost is low. So it can be selected as a filler to prepare organic coating. The lamellar structure of g-C3N4 is favorable for its dispersion in organic coatings. Stearic acid is an environmentally friendly material with low surface energy. It can improve the hydrophobicity of the coating. In this research, porous g-C3N4 nanosheets were used as filler and stearic acid was used as surface modifier to prepare waterborne acrylic resin-based organic composite coating. The chemical reagent durability, electrochemical durability and mechanical properties of the composite coating were tested. At the same time, the photocatalytic degradation performance of the coating surface was also tested. The results showed that g-C3N4 as filler and stearic acid could effectively improve the durability of the waterborne acrylic resin coating. Meanwhile, the coating surface has obvious visible light-activated photocatalytic performance due to the addition of g-C3N4.

Funder

Qingdao West Coast New Area Science and Technology Project

Young Innovative Science and Technology Support Program for Universities of Shandong Province

Natural Science Foundation of Shandong

Innovation Capability Improvement Project of Small and Medium-sized Technological Enterprises in Shandong Province

Science and Development Foundation of Dongying

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3