TEM STUDY OF THE MICROSTRUCTURE AND INTERFACES IN YBa2Cu3Oy THIN FILMS GROWN ON SILICON WITH A Eu2CuO4/Y-ZrO2 BI-LAYER BUFFER

Author:

GAO J.1,FU E. G.1,LUO Z.1,WANG Z.2,YU D. P.2

Affiliation:

1. Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong

2. Department of Physics, Peking University, Beijing 100080, China

Abstract

The microstructures in the YBa 2 Cu 3 O y films grown on Eu 2 CuO 4/ Y-ZrO 2(YSZ) buffered silicon were studied by means of transmission electron microscopy. Our effort was emphasized on the influence of the interfacial microstructures on the formation and epitaxy of the grown layer. It was found that a native Si -oxide layer ~ 5 nm was formed at the boundary between YSZ and silicon. Such an intermediate layer should be formed after the initial formation of the grown YSZ layer as the epitaxy of YSZ still remain. The epitaxy can be kept through all layers without the formation of big grain boundaries. No amorphous layers and secondary phases were observed at the interfaces of YSZ/ECO and YBCO/ECO. The results demonstrate that the crystallinity and the epitaxy of YBCO have been greatly improved by the bi-layer buffer.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3