THE PERFORMANCES OF TiN-TiB2 COATING PREPARED BY REACTIVE PLASMA SPRAYING

Author:

MA JING12,HU JIANWEN1,YAN DONGQING1,MAO ZHENGPING34

Affiliation:

1. Hebei Key Laboratory of Material Near-Net Forming Technology, Hebei University of Science and Technology, No. 70 Yuhua East Road, Shijiazhuang, Hebei Province/050018, P. R. China

2. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, P. R. China

3. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, P. R. China

4. Sulzer Metco Surface Technology (Shanghai) Co. Ltd, No. 666 MinBei Road, Shanghai 201107, P. R. China

Abstract

Reactive plasma sprayed coatings were prepared on carbon steel substrates with Ti and B4C as starting materials. Two kinds of gases ( Ar and N2 ) were used as feeding gases for powders, respectively. 10 wt.% Cr was added in the powders as binder to increase the bond strength of the coating. The phases, microstructure, micro-hardness and corrosion polarization behavior in 3.5 wt.% NaCl solution of the two coatings were studied. The results show that TiN-TiB2 coatings were prepared under both conditions. The two coatings have typically laminated structure. However, the coating prepared with Ar as feeding gas has higher porosity and some unmelted Cr particles. It also contains certain content of titanium oxides. The microhardness of coating prepared with Ar as feeding gas is lower due to its higher porosity, unmelted Cr particles and some amounts of TiO2 . The corrosion resistance of TiN-TiB2 coating prepared with Ar as feeding gas in 3.5 wt.% NaCl solution is worse than that of the coating prepared with N2 as feeding gas. Yet the corrosion resistance of reactive plasma sprayed TiN-TiB2 coating is improved greatly compared with that of carbon steel. The thermodynamic analysis of reactive plasma spraying process is also discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3