A SURFACE ANOMALOUS DIFFRACTION STUDY OF THE Ni(100)(3×3)-(Cs+O) SYSTEM

Author:

NORRIS A. G.1,LUCAS C. A.1,McGRATH R.1,SCHEDIN F.2,THORNTON G.2,TURNER T. S.3,NORMAN D.3

Affiliation:

1. Surface Science Research Centre and Department of Physics, The University of Liverpool, Liverpool L69 3BX, UK

2. Surface Science Research Centre and Department of Chemistry, Manchester University, Manchester M13 9PL, UK

3. CLRC Daresbury Laboratory, Warrington WA4 4AD, UK

Abstract

Alkali metal coadsorption systems represent a step along the pathway from simple model adsorbate overlayers to more technologically relevant real systems. However, such is their complexity that very few systems have been structurally determined. Here we present a surface X-ray diffraction investigation of one of these systems, Ni (100)-(3×3)- (Cs+O) . Here a structural determination is particularly challenging due to the presence of three species in the surface layers and by the size of the unit cell. As a first step, anomalous scattering has been used to determine whether there is a contribution of the nickel substrate to the fractional order diffraction intensity. Measurements of the fractional order rods at 10 eV and 200 V below the nickel K edge (8333 eV) were used to probe the nickel contribution to the fractional order rods. It was found that the intensity of the scattering was unchanged, indicating that the fractional order peaks are caused by scattering from the coadsorbates only. This shows that the nickel surface layers are not changed by the adsorption and thus sets a useful constraint on the number of possible structures.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3