THE EFFECT OF BATH TEMPERATURE ON THE STRUCTURE AND TRIBOLOGICAL BEHAVIOR OF ELECTROLESS Ni–B–Mo COATINGS OBTAINED FROM STABILIZER-FREE BATH

Author:

AGRAWAL ROHIT1ORCID,MUKHOPADHYAY ARKADEB1ORCID

Affiliation:

1. Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India

Abstract

Conventional electroless Ni–B–Mo (ENB–Mo) deposits are formed using hazardous lead or thallium-containing solutions, which must be removed. In this study, ENB–Mo deposits were developed in a bath free of stabilizers and harmful heavy metals. This study estimates the effect of variation of coating bath temperature on tribological performance of ENB–Mo coating developed over AISI 1040 steel. The chosen bath temperatures were 85[Formula: see text]C, 90[Formula: see text]C, and 95[Formula: see text]C to achieve ENB–Mo coating with varying B and Mo content. The 12–15 [Formula: see text]m thick coating was uniform. In comparison to steel substrate, all of the coatings show enhanced corrosion resistance. In the as-deposited state, coatings were mixed amorphous and nanocrystalline with peak of Fe overlapping with Ni. Moreover, TGA results revealed that inclusion of molybdenum enhanced coatings thermal stability. The worn specimens at 300[Formula: see text]C reveal development of shielding tribo-oxide coatings and existence of microstructural changes. At high working temperatures (300[Formula: see text]C), wear debris also has a major impact on tribological mechanisms of coatings. Correlation between microstructure, tribological behavior, and corrosion resistance have also been conducted for ENB–Mo coatings.

Funder

Institute Seed Money Scheme — 2020

Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3