SPACE-CHARGE LAYERS AND SURFACE STATES AT THE SILICON/ELECTROLYTE INTERFACE

Author:

SAVIR E.1,MANY A.1,GOLDSTEIN Y.1,WEISZ S.Z.2,AVALOS J.2

Affiliation:

1. Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

2. Department of Physics, University of Puerto Rico, Rio Piedras, PR 00931, USA

Abstract

Pulse measurements on the silicon/electrolyte interface have been used to study space-charge layers and surface states on the (100) and (111) faces of silicon. The techniques used enable both the creation and study of space-charge layers at the semiconductor surface, ranging from large-depletion to strong-accumulation conditions. What is more important, they permit a straightforward separation of the different components of the induced charge at the silicon/electrolyte interface, so as to yield the variation of both the free-electron density in the space-charge layer and the density of occupied surface states with barrier height. The measured space-charge characteristics are in very good agreement with theory. The data in strong-accumulation layers indicate the presence of an insulating buffer layer (such as an oxide), 1–2 monolayers thick. As to surface states, we find that for CP-4 etched silicon, a discrete distribution of shallow states exists, located 0.1 eV on the (100) face and 0.14 eV on the (111) face below the conduction-band edge, with a total density of ~6×1012 cm −2. Furthermore, except for a very low continuous background, deeper surface states are absent over most of the energy gap. Addition of a minute amount of hydrofluoric acid to the indifferent electrolyte used reduces the density of the surface states by nearly two orders of magnitude. The distribution of the shallow states remains discrete but their energy position becomes somewhat deeper. It appears that Si-H bonds are formed at the Si/electrolyte interface, just as has been reported for the HF-treated free Si surface. It is very likely that the formation of such bonds leaves, on both types of surface, considerably fewer dangling bonds and hence considerably fewer surface states.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3