EFFECT OF HEAT INPUT AND POST WELD HEAT TREATMENT ON THE PHASE TRANSFORMATION TEMPERATURE OF TIG-WELDED NiTinol SHEETS

Author:

R MANOJ SAMSON1,T DEEPAN BHARATHI KANNAN1

Affiliation:

1. Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamilnadu, India-603203, India

Abstract

NiTinol Shape Memory Alloys (SMA) are becoming one of the ideal choices for biomedical industries due to their unique properties such as Shape Memory Effect (SME), Super Elasticity (SE) and Biocompatibility. In the process of making complicated biomedical implants, welding processes play a vital role. In this work, an attempt was made to study the effect of heat input and Post Weld Heat Treatment (PWHT) on the TIG-welded NiTinol SMA. TIG welding was carried out on 1-mm thick NiTinol sheets. With increase in heat input, there was a significant variation in Phase Transformation Temperature (PTT) of welded samples. The variation in PTT is attributed to the formation of intermetallic phases such as Ti2Ni, Ni3Ti and NiTiO3 and coarse grain formation. Electron Back Scattered Diffraction (EBSD) analysis on the weld revealed that the average grain size of parent material was increased from 9.92851[Formula: see text][Formula: see text]m to 48.292345[Formula: see text][Formula: see text]m after the welding process. The PWHT was carried out on the best weld characteristic sample. PWHT did not produce significant effect on PTT. Austenite start and finish temperature slightly decreased after PWHT, whereas slight drift towards the positive side was noticed in martensite start and finish temperature.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3