Affiliation:
1. Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamilnadu, India-603203, India
Abstract
NiTinol Shape Memory Alloys (SMA) are becoming one of the ideal choices for biomedical industries due to their unique properties such as Shape Memory Effect (SME), Super Elasticity (SE) and Biocompatibility. In the process of making complicated biomedical implants, welding processes play a vital role. In this work, an attempt was made to study the effect of heat input and Post Weld Heat Treatment (PWHT) on the TIG-welded NiTinol SMA. TIG welding was carried out on 1-mm thick NiTinol sheets. With increase in heat input, there was a significant variation in Phase Transformation Temperature (PTT) of welded samples. The variation in PTT is attributed to the formation of intermetallic phases such as Ti2Ni, Ni3Ti and NiTiO3 and coarse grain formation. Electron Back Scattered Diffraction (EBSD) analysis on the weld revealed that the average grain size of parent material was increased from 9.92851[Formula: see text][Formula: see text]m to 48.292345[Formula: see text][Formula: see text]m after the welding process. The PWHT was carried out on the best weld characteristic sample. PWHT did not produce significant effect on PTT. Austenite start and finish temperature slightly decreased after PWHT, whereas slight drift towards the positive side was noticed in martensite start and finish temperature.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献