GJO-MLP: A NOVEL METHOD FOR HYBRID METAHEURISTICS MULTI-LAYER PERCEPTRON AND A NEW APPROACH FOR PREDICTION OF WEAR LOSS OF AZ91D MAGNESIUM ALLOY WORN AT DRY, OIL, AND h-BN NANOADDITIVE OIL

Author:

ALTAY OSMAN1ORCID,GURGENC TURAN2ORCID

Affiliation:

1. Department of Software Engineering, Manisa Celal Bayar University, 45140, Manisa, Turkey

2. Department of Automotive Engineering, Firat University, 23100, Elazig, Turkey

Abstract

In this study, the AZ91D magnesium alloy was worn at different wear conditions (dry, oil, and h-BN nanoadditive oil), loads (10–60 N), sliding speeds (50–150 mm/s) and sliding distances (100–1000 m). Wear losses increased with the increase of applied load, sliding speed, and sliding distance. Wear losses were decreased in the h-BN nanoadditive oil conditions. For the first time, the wear losses were predicted using the hybrid golden jackal optimizer-multi-layer perceptron (GJO-MLP) method proposed in this study, using the experimentally obtained data. In addition, the performance of the proposed method was compared with the whale optimization-MLP (WOA-MLP), genetic algorithm-MLP (GA-MLP) and ant lion optimization-MLP (ALO-MLP) methods, which are widely used in the literature. The results showed that GJO-MLP outperformed other methods with a performance of 0.9784 in [Formula: see text]2 value.

Funder

Firat University Research Fund

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3