EVOLUTION OF LATERAL ORDER AND MOLECULAR REORIENTATION IN THE BENZOATE/Cu(110) SYSTEM

Author:

FREDERICK B.G.1,LEIBSLE F.M.1,HAQ S.1,RICHARDSON N.V.1

Affiliation:

1. Surface Science Research Centre, University of Liverpool, Liverpool, L69 3BX, UK

Abstract

Coverage-dependent adsorption studies of benzoic acid on a Cu(110) single crystal surface resulted in a sequence of novel, large periodicity structures containing differently oriented benzoate species, as shown by LEED, STM and FTIR. At low coverage, only flat-lying benzoate species are present and faceting of step edges is observed. The favorable mobility of flat-lying species results in formation of large, single domain islands with a [Formula: see text] periodicity containing four molecules per unit cell. Additional adsorption produces island growth, with single domains typically covering entire terraces and, simultaneously, addition of a fifth benzoate species per unit cell oriented perpendicular to the surface. This structure, denoted as the “α phase,” corresponds to a local coverage of θ=0.21 ML. Then, the periodicity changes to a [Formula: see text] structure with single and paired rows of upright species, retaining the dominant <4, 3> direction and large single domain sizes, in addition to six flat-lying species. The second structure, referred to as the “β phase,” corresponds to a local coverage of θ= 0.23 ML. The saturation coverage, c(8×2) structure, at θ=0.25 ML, grows in from step edges and contains only upright benzoate species. The results are interpreted in terms of the interplay between molecular orientation, site-specificity, diffusion and the intermolecular interactions favoring long range, two-dimensional order.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3