EFFECT OF CARBON CONTENT ON MICROSTRUCTURE EVOLUTION AND PROPERTIES OF HYPEREUTECTIC HIGH CHROMIUM CAST IRON

Author:

GUO QIANG1,FU HANGUANG1ORCID,GUO XINGYE1,XING ZHENGUO2,LIN JIAN1

Affiliation:

1. Key Laboratory of Advanced Functional Materials, Ministry of Education, Research Institute of Advanced Materials Processing Technology, Beijing University of Technology, Amount 100, Pingle Garden, Chaoyang District, Beijing 100124, P. R. China

2. Engineering Research Center of Hebei for Abrasion Resistant Metal Matrix Composite, Handan Huiqiao Composite, Material Technology Co., Ltd., Handan 056000, Hebei Province, P. R. China

Abstract

This study is to reveal the influence of the amount of carbon content on the microstructure evolution, mechanical properties, and wear properties of Hypereutectic High Chromium Cast Iron (HHCCI). The results indicated that the carbon content plays a key role in the regulation of carbides in the cast iron microstructure. As the amount of carbon content rises, the primary carbides in the cast iron microstructure become apparently coarser, and the volume fraction of carbides gradually increases. The carbide volume fraction reaches 62% when the carbon content is 5[Formula: see text]wt.%. When the value of the carbon content increases, the accumulation and growth of eutectic carbides in the heat-treated cast iron become more and more obvious. After heat treatment, a large number of secondary carbides will be precipitated from the austenite matrix, in the form of fine particles or short rods, with a dispersed distribution. The macroscopic hardness of HHCCI has increased. When the carbon content is 3.5[Formula: see text]wt.%, the macroscopic hardness is 61.2 HRC, and when the carbon content becomes 5[Formula: see text]wt.%, it reaches 64.3 HRC. The wear resistance of HHCCI increases with the value of the carbon content increases. When the carbon content was increased from 3.5[Formula: see text]wt.% to 5.0[Formula: see text]wt.%, the wear resistance of the material increased by 85.7%. The wear of HHCCI is mainly adhesive wear and fatigue wear, and the wear morphology is mainly spalling pits and wear debris.

Funder

National Natural Science Foundation of China

Hebei Science and Technology Major Project

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3