EXPERIMENTAL STUDY ON THE SURFACE ROUGHNESS AND OPTIMIZATION OF CUTTING PARAMETERS IN THE HARD TURNING USING BIOCOMPATIBLE TiAlN-COATED AND UNCOATED CARBIDE INSERTS

Author:

DIKSHIT MITHILESH K.1,PATHAK VIMAL K.2,AGRAWAL REEYA3,SAXENA KULDEEP K.4,BUDDHI DHARAM5,MALIK VINAYAK67

Affiliation:

1. Department of Mechanical Engineering, Institute of Infrastructure, Technology, Research and Management, Ahmedabad, India

2. Department of Mechanical Engineering, Manipal University Jaipur, Rajasthan, India

3. GLA University, Mathura, UP 281406, India

4. Department of Mechanical Engineering, GLA University, Mathura, UP, India

5. Division of Research & Innovation, Uttaranchal University, Uttarakhand, 248007, Dehradun, India

6. Department of Mechanical Engineering, KLS Gogte Institute of Technology, Belagavi 590008, Karnataka, India

7. Visvesvaraya Technological University, Belagavi 590018, Karnataka, India

Abstract

Machining of difficult-to-cut materials has always been a focus of research. In terms of surface roughness, it is one of the most important machinability indicators used to evaluate the performance of machining processes. This research aims to investigate the effect of biocompatible TiAlN-coated and uncoated carbide inserts, as well as the effect of cutting parameters such as feed, rotational speed, and depth of cut on surface roughness in the hard turning of M2 tool steel at 64 HRC. The central composite design is used to create the experimental layout. Surface roughness values are measured using separate experiments for coated and uncoated inserts. A quadratic model is selected, and an analysis of variance (ANOVA) is performed to test the adequacy of the developed model. From the ANOVA, it is found that feed and rotational speed are the most significant parameter while hard turning with TiAlN-coated and uncoated inserts, respectively. Cutting parameters are ranked according to their importance using the Pareto chart. The composite desirability function is employed to determine the optimal setting of cutting parameters to minimize the surface roughness and a confirmation experiment is conducted to validate the optimization results. Confirmation results are very close to the predicted value and the error between experimental and predicted results are 7.93% and 9.36% with TiAlN-coated and uncoated carbide inserts, respectively. TiAlN-coated carbide insert gives better surface roughness compared to an uncoated carbide insert.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3