PREPARATION AND BIOLOGICAL EVALUATION OF PLD-BASED FORSTERITE–HYDROXYAPATITE NANOCOMPOSITE COATING ON STAINLESS STEEL 316L

Author:

PRAKASH P. SHAKTI1ORCID,PAWAR SURYAPPA JAYAPPA2,TEWARI RAVI PRAKASH2

Affiliation:

1. Department of Biomedical Engineering, School of Engineering & Technology, Mody University, Lakshmangarh, Sikar, Rajasthan 332311, India

2. Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India

Abstract

The present work deals with the fabrication of forsterite–hydroxyapatite (FS–HA) hybrid coatings on stainless-steel 316L using the pulsed laser deposition (PLD) technique. The stainless steel (SS 316L) as a metallic implant is widely used in hard tissue applications. The XRD studies have confirmed the crystalline behavior of synthesized FS powder with an average crystallite size of 54[Formula: see text]nm. The synthesized FS powder was mixed in different compositions (10, 20, 30[Formula: see text]wt.%) into HA for preparing PLD targets (pellets). The XRD of the prepared pellets by UTM has confirmed both phases of FS and HA. The Scanning Electron Microscopy (SEM) of the coated samples depicted the successful deposition of composite powders on the substrates (SS 316[Formula: see text]L). The Ellipsometer was used to investigate the thickness of different substrates and it was found as 243, 251, 255, and 257[Formula: see text]nm for CP1, CP2, CP3, and CP4, respectively. The bioactivity of the coated substrates with different compositions (pure HA, 10%, 20%, 30%, and pure FS) was investigated by immersing the samples in simulated body fluid (SBF) for 14[Formula: see text]days. The same samples were then characterized by SEM which confirms the apatite layer formation that reflects the bioactivity. The addition of FS powder into HA will stimulate the apatite formation which enhances the bioactivity. The Raman Spectroscopy of coated samples reveals the successful deposition of different compositions of FS–HA nanocomposite. The peaks of Raman spectroscopy were corresponding to the XRD results of the pellets (different compositions of FS–HA). The antimicrobial activity of different compositions of FS–HA against Escherichia coli (E. coli) bacteria also showed a significant zone of inhibition. The bioactivity and antimicrobial behavior of FS–HA along with successful deposition by PLD have shown better potential applications for biomedical implant coating.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3