HIGHER-ORDER SLIP FLOW OF MAXWELL FLUIDS CONTAINING GYROTACTIC MICROORGANISMS PAST A HORIZONTAL EXTENDING SURFACE: ANALYSIS WITH CONVECTIVE CONDITIONS

Author:

LONE SHOWKAT AHMAD1,ANWAR SADIA2,RAIZAH ZEHBA3,ALMUSAWA MUSAWA YAHYA4,SAEED ANWAR5

Affiliation:

1. Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, (Jeddah-M), Riyadh 11673, Kingdom of Saudi Arabia

2. Department of Mathematics, College of Arts and Sciences, Wadi Ad Dawasir (11991), Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia

3. Department of Mathematics, College of Science, Abha, King Khalid University, Saudi Arabia

4. Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia

5. Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand

Abstract

This paper explores the bioconvective Maxwell fluid flow over a horizontal stretching sheet. The Maxwell fluid flow is considered in the presence of gyrotactic microorganisms. The velocity slips and convection conditions are used in this investigation. Additionally, the Cattaneo–Christov heat and mass flux model, Brownian motion, thermophoresis, and activation energy are employed in the flow problem. The model formulation has been transferred to a dimension-free format using similarity variables and solved by the homotopy analysis approach. Figures have been sketched to depict the HAM convergence. The consequences of this study are that the velocity of Maxwell fluid flow reduces for higher Hartmann number, buoyancy ratio factor, and bioconvective Rayleigh number, whereas the increasing behavior in velocity profile is seen against Deborah number. The thermal characteristics of the Maxwell fluid flow diminish with developing values of the thermal relaxation factor and Prandtl number, while augmenting with the increasing Brownian motion, thermal and concentration Biot numbers and thermophoresis factor. The rate of thermal transmission of the Maxwell fluid flow enhances with the increasing Prandtl number, and mixed convective factor, while diminishing with the increasing buoyancy ratio factor, thermophoresis factor and Brownian motion factor.

Funder

Scientific Research at King Khalid University, Abha, Saudi Arabia

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3