SPUTTER-GROWN Sb-DOPED SILICON NANOCRYSTALS EMBEDDED IN SILICON-RICH CARBIDE FOR Si HETEROJUNCTION SOLAR CELLS

Author:

CHEN XIAOBO1,TANG YU2,HAO JIABO2

Affiliation:

1. School of New Energy and Electronic Engineering, Yancheng Teachers University, Yancheng 224051, P. R. China

2. School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, P. R. China

Abstract

Sb-doped silicon nanocrystals (Si–NCs) films were fabricated by magnetron co-sputtering combined with rapid-thermal annealing. The effects of Sb content on the structural and electrical properties of the films were studied. The dot size increased with the increasing Sb content, and could be correlated to the effect of Sb-induced crystallization. The variation in the concentration of Sb shows a significant impact on the film properties, where as doped with 0.8[Formula: see text]at.% of Sb exhibited major property improvements when compared with other films. By employing Sb-doped Si–NCs films as emitter layers, Si–NCs/monocrystalline silicon heterojunction solar cells were fabricated and the effect of the Sb doping concentration on the photovoltaic properties was studied. It is found that the doping level in the Si–NCs layer is a key factor in determining the short-circuit current density and power conversion efficiency (PCE). With an optimized doping concentration of 0.8[Formula: see text]at.% of Sb, a maximal PCE of 7.10% was obtained. This study indicates that the Sb-doped Si–NCs can be good candidates for all-silicon tandem solar cells.

Funder

A Project Supported by Scientific Research Fund of SiChuan Provincial Education Department

A Project Supported by Scientific Reserch Fund of SiChuan Provincial Education Department

Scientific Research Foundation of Sichuan University of Arts and Science

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3