EFFECT OF FRICTION STIR PROCESSING ON CORROSION BEHAVIOR OF CAST AZ91C MAGNESIUM ALLOY

Author:

HASSANI BEHZAD1,VALLANT RUDOLF2,KARIMZADEH FATHALLAH1,ENAYATI MOHAMMAD HOSSEIN1,SABOONI SOHEIL1,PRADEEP KASYAP2

Affiliation:

1. Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

2. Institute of Materials Science and Welding, Graz University of Technology, Rechbauerstraße 12, Graz 8010, Austria

Abstract

The corrosion behavior of as-cast AZ91C magnesium alloy was studied by performing friction stir processing (FSP) and FSP followed by solution annealing and then aging. Phase analysis, microstructural characterization, potentiodynamic polarization test and immersion tests were carried out to relate the corrosion behavior to the samples microstructure. The microstructural observations revealed the breakage and dissolution of coarse dendritic microstructure as well as the coarse secondary [Formula: see text]-Mg[Formula: see text]Al[Formula: see text] phase which resulted in a homogenized and fine grained microstructure (15[Formula: see text][Formula: see text]m). T6 heat treatment resulted in an excessive growth and dispersion of the secondary phases in the microstructure of FSP zone. The potentiodynamic polarization and immersion tests proved a significant effect of both FSP and FSP followed by T6 on increasing the corrosion resistance of the cast AZ91C magnesium alloy. Improve in corrosion resistance after FSP was attributed to grain refinement and elimination of segregations and casting defects which makes more adhesive passive layer. Increase in volume fraction of precipitations after T6 heat treatment is determined to be the main factor which stabilizes the passive layer at different polarization values and is considered to be responsible for increasing the corrosion resistance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3