O-PHTHALIC ANHYDRIDE AS AN EXCELLENT VAPOR PHASE CORROSION INHIBITOR FOR MG ALLOY AZ31B UNDER SIMULATED OCEAN–ATMOSPHERE ENVIRONMENT

Author:

WANG JINGBAO1,TABISH MOHAMMAD1,ZHAO JINGMAO12

Affiliation:

1. College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

2. Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing 100029, P. R. China

Abstract

Magnesium alloy with good application potential has a poor corrosion resistance, so it is essential to develop a new corrosion inhibitor and investigate the inhibition mechanism for magnesium alloy. In this work, three vapor phase corrosion inhibitors (VCIs) were used for AZ31B magnesium alloy under a simulated ocean–atmosphere environment, and the inhibition behaviors and mechanisms were studied. The inhibition performances of the three VCIs were evaluated by Digital Still Camera, electrochemical tests and scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) combined with X-ray photoelectron spectroscopy (XPS) was used to further explore the inhibition mechanism. Compared to benzoic acid and ammonium benzoate, o-phthalic anhydride can provide the best protection for AZ31B magnesium alloy. The [Formula: see text] was reduced from 11.18 [Formula: see text] A cm[Formula: see text] (blank) to 0.65 [Formula: see text] A cm[Formula: see text] and the ( [Formula: see text] + [Formula: see text]) was increased from 1478.1 Ω cm2(blank) to 3129.8 Ω cm2 with o-phthalic anhydride as VCI. O-phthalic anhydride combined with Mg[Formula: see text] to form different complexes with different molecular weights, which developed a more compact protective film on the AZ31B surface. Overall, the o-phthalic anhydride can be utilized as an excellent VCI for AZ31B magnesium alloy in a simulated ocean–atmosphere environment.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3