A PROCEDURE TO DETERMINE THE SEGREGATION PARAMETERS IN TERNARY SYSTEMS FROM EXPERIMENTAL DATA OF A LINEAR TEMPERATURE RUN

Author:

ROOS W. D.1,ASANTE J. K. O.2

Affiliation:

1. Department of Physics, University of the Free State, Bloemfontein, South Africa

2. Department of Chemistry & Physics, Tshwane University of Technology, Pretoria, South Africa

Abstract

Profiles of surface concentrations as a function of temperature, where the temperature is increased at a constant rate, contain the necessary information to extract segregation parameters. A model using rate equations can be used to simulate these profiles. Even on a high-speed computer, solving these equations can take hours. For ternary and higher component alloys the fit parameters are at least nine and finding the best fit manually can extend the search to days. Theoretical segregation and diffusion models show two temperature regions of interest. In the low-temperature region, representing the kinetics of segregation, the diffusion coefficients of the species dominate the flux of atoms to the surface, and in the high-temperature region the surface concentrations are independent of the diffusion coefficients. In the high-temperature equilibrium region the surface concentrations are determined only by the segregation energies and interaction coefficients. A procedure is presented that can find a good set of segregation parameters within seconds. The sensitivity of selecting the kinetics, as well as the equilibrium temperature regions will be demonstrated. The procedure is used to extract the segregation parameters for a Cu (111) 0.13 at% Sn 0.18 at% Sb system.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3