Affiliation:
1. Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, P. M. B. X680, Pretoria 0001, South Africa
2. Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, P. M. B. 704, Akure, Ondo State, Nigeria
Abstract
Ti-6Al-4V alloy is restricted in industrial application as a result of its relatively low hardness and poor tribological properties. However, the limitations associated with Ti-6Al-4V in severe tribological conditions can be improved via laser cladding technique. In this study, the influence of rare earth oxide (CeO[Formula: see text] addition on microstructure, hardness and tribological behavior of laser-clad titanium–cobalt-based coatings on Ti6Al4V alloy was investigated. The optimized parameters used for laser depositions are laser power 900[Formula: see text]W; beam spot size 3[Formula: see text]mm; powder feed rate 1.0[Formula: see text]g/min; gas flow rate 1.2[Formula: see text]L/min while laser scan speed was varied at 0.6[Formula: see text]m/min and 1.2[Formula: see text]m/min. Thereafter, the coating morphology as well as wear mechanism of the coatings of CeO2 particles (5–10[Formula: see text]wt.%) dispersed in TiCo matrix were investigated via scanning electron microscope (SEM) equipped with energy dispersed spectrometry (EDS), whereas the intermetallic phases present in the coatings were observed using Philips PW1713 X-ray diffractometer (XRD). Furthermore, the micro-hardness values of the coatings were recorded while wear test was carried out using a reciprocating set up (UMT-2 — CETR tribometer). Results revealed that the incorporation of CeO2 particles into the melt pool influenced the morphology of the coatings, thus resulting in finer cellular dendrites, homogenous and strong metallurgical bonding between the laser cladded coating and the substrate. The phases revealed various fractions of interdendritic compounds (CeCo2, Ni3Ti, Co2Ti, CoTi, Al2O3, TiO, AlTi3, and Ce2O[Formula: see text] dispersed within the coating matrix, thus resulting in 2.68 times improvement on the surface hardness and 47.4% reduction in friction coefficient in comparison with Ti-6Al-4V alloy.
Publisher
World Scientific Pub Co Pte Lt
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献