THE ORIENTATION OF BENZENE ON BIMETALLIC SURFACES

Author:

KOSCHEL H.12,HELD G.12,STEINRÜCK H.-P.

Affiliation:

1. Physikalische Chemie II, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany

2. Experimentelle Physik II, Universität Würzburg, D-97074 Würzburg, Germany

Abstract

Angle-resolved UV photoelectron spectroscopy (ARUPS) using linearly polarized synchrotron radiation is used to determine the orientation of benzene molecules on two modifications of the pseudomorphic Ni/Cu(111) layer, the Ni-terminated adlayer and the Cu-terminated Ni sublayer. It is found that the molecules adsorb with their C–H bonds 30° off the close-packed substrate rows (σv orientation) on the Ni adlayer whereas no preferential orientation was found for the Cu-terminated Ni sublayer. For these and other close-packed mono- and bimetallic surfaces involving Cu, Ni and Ru, the correlation between adsorption geometry and reactivity of benzene is explored in connection with temperature-programmed desorption (TPD). Like for the Ni/Cu(111) sublayer, no preferential lateral orientation and a weak bond is found on most other Cu-terminated surfaces at 80 K. This goes along with the absence of any dissociation on these surfaces. Only on the stretched 1 ML Cu/Ru(0001) surface is the substrate–benzene bond strong enough to induce a clear preferential orientation (σd with C–H bonds parallel to the close-packed rows) but still too weak to induce dissociation. The same orientation was found for the saturated benzene layer on Ni(111) where the molecules also do not dissociate. Dissociation is, however, observed for the saturation coverage of benzene on the Ni/Cu(111) adlayer and for low benzene coverages on Ni(111). On these surfaces the azimuthal orientation of the benzene molecules is σv, i.e. rotated by 30° with respect to the close-packed rows.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3