A COMBINATION OF POINT DEFECTS AND NANOSIZED GRAINS TO MINIMIZE LATTICE THERMAL CONDUCTIVITY OF Sn AND Se CO-DOPED CoSb3 VIA MIXED BALL MILLING AND SPARK PLASMA SINTERING

Author:

KAPANYA THAMMANOON1ORCID,JIANG BINBIN2,HE JIAQING2,QIU YANG2,THANACHAYANONT CHANCHANA3,SARAKONSRI THAPANEE4

Affiliation:

1. Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

2. Shenzhen Key Laboratory of Thermoelectric Materials and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China

3. National Metal, Materials Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand

4. Center of Advanced Materials for Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

The efficient strategies to minimize thermal conductivity in skutterudite materials are creating point defects along with nanosized grains. In this report, Sn and Se co-doped CoSb3 materials were synthesized through mixed-ball milling and spark plasma sintering techniques to utilize this strategy. Their phases, microstructure and thermoelectric properties were investigated under the content variation of Sn and Se in CoSb3 samples. The experimental results revealed that the Sn and Se were substituted at Sb sites in CoSb3 crystal structure and grain sizes were restricted to a hundred nanometer. The lattice thermal conductivity was reduced to 2.4[Formula: see text]W/mK at 298K. Interestingly, increasing Sn and Se doped content could further minimize the lattice thermal conductivity. The lowest value at room temperature is 1.79[Formula: see text]W/mK for CoSb[Formula: see text]Sn[Formula: see text]Se[Formula: see text] which was dramatically lower than pure CoSb3. Moreover, the increment of Sn and Se content also increased the electrical conductivity of doped samples, while the negative Seebeck coefficient sign tended to decrease. As expected, low electrical conductivity and substantial reduction in the Seebeck coefficient of doped samples at high measurement temperature, resulting in low power factor and low ZT values. It was clearly seen that the highest power factor of 880[Formula: see text][Formula: see text]W/mK2 was found at 516[Formula: see text]K in CoSb[Formula: see text]Sn[Formula: see text]Se[Formula: see text]. Furthermore, it also dominated the highest ZT value of 0.29 at 565 K, compared to the other Sn and Se co-doped samples. From these results, ball milling under dry conditions followed by wet conditions not only allowed a longer milling process but also generated a small fraction of pore which was a part of the reduction in thermal conductivity. Especially, the advantage of the existence of Sn and Se point defects and nanosized grains from this work will be escalated when it was applied to prepare materials that have high power factor values.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3