ELECTRODEPOSITION BASED DEVELOPMENT OF Ni–TiN–AlN AND Ni–SiC–Cr COMPOSITE COATINGS FOR TUNGSTEN CARBIDE CUTTING TOOLS

Author:

SAINI ABHINEET1,PABLA B. S.2,DHAMI S. S.2

Affiliation:

1. Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India

2. Department of Mechanical Engineering, NITTTR, Chandigarh 160019, India

Abstract

Metal-based functionally graded coatings have proven effectiveness in improving anti-wear properties and surface integrity of the substrates. The use of electrodeposition coating technique, considering the economics and versatility associated with this method, is a preferred technique of depositing metal-based composite coatings. Further, Ni-based composite coatings are proven for anti-wear applications, and addition of various reinforcement for developing functional coatings need to be evaluated for different applications. This study describes the development, analysis, and performance evaluation of Ni–TiN–AlN and Ni–SiC–Cr electrodeposited composite coatings on tungsten carbide (WC) tool substrates, to impart improved anti-wear properties during machining. The composite coatings were deposited and optimized for current density values of the electrodeposition process, which was identified as the most significant parameter in both the cases. The coatings were characterized using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) for microstructural analysis. The results were further analyzed for tribological behavior through microhardness and adhesion strength tests of the deposited coatings, which are significant properties imitating anti-wear characteristics of the substrate. A significant increase of 47% and 36% in microhardness was obtained for Ni–SiC–Cr coated specimen and Ni–TiN–AlN coated specimen, respectively, compared to the uncoated WC substrates, accompanied with a good adhesion strength in both the cases. The microstructural analysis in both the cases revealed an increase in the deposited coating constituents with increasing current density, leading to a denser coating deposition up to the saturation point, and then beginning of coating delamination due to over-saturation with further increase in current density.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3