TRANSITION METAL NANOPARTICLES AS PROMISING ANTIMICROBIAL AGENTS

Author:

VASHISTHA VINOD KUMAR1,BALA RENU2,DAS DIPAK KUMAR1,MITTAL ANKIT3,PULLABHOTLA RAJASEKHAR VSR4

Affiliation:

1. Department of Chemistry, GLA University, Mathura 281406, India

2. Department of Chemistry, Kalindi College, University of Delhi, Delhi, India

3. Department of Chemistry, Shyam Lal College, University of Delhi, Delhi, India

4. Department of Chemistry, Faculty of Science, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa, 3886, South Africa

Abstract

The bacterial spread can pose a significant risk in the transmission of infectious diseases. Nanomaterials, including synthetic antibacterial nanoparticles, have emerged as a promising solution to combat bacterial infections due to their unique physicochemical properties. Metal nanoparticles have been shown to exhibit potent antimicrobial activity against a broad spectrum of bacteria, including both gram-positive and gram-negative strains. One of the main advantages of using metal nanoparticles as antibacterial agents is their ability to penetrate the bacterial cell wall and disrupt cellular processes. This disruption can lead to the inhibition of bacterial growth and ultimately, bacterial death. Furthermore, metal nanoparticles can be engineered with specific surface modifications that enhance their antibacterial activity and improve their biocompatibility. These modifications can include the attachment of targeting ligands, peptides, or antibodies to the nanoparticle surface, which can increase their specificity toward bacterial cells and reduce their toxicity toward mammalian cells. Overall, the use of metal nanoparticles as antibacterial agents holds great promise for the development of novel therapeutic strategies to combat bacterial infections, both in vitro and in vivo. In this paper, we highlight the development of metal NPs, particularly those based on Mn, Fe, Co, Zn and Cu for their antimicrobial properties and related mechanisms.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3