Affiliation:
1. Key Laboratory of Beam technology and Materials, Modification of Ministry of Education, Beijing Radiation Center, Beijing 100875, P. R. China
2. College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
Abstract
In this paper, the antifriction carbonitriding (PEC/N) layers were prepared on pure iron by cathodic plasma electrolytic treatment (PET) in glycerin and carbamide aqueous solution under 360[Formula: see text]V for 1, 3 and 10[Formula: see text]min. Influence of discharge time on morphology, structure, surface roughness and microhardness of PEC/N layer was analyzed. The tribological performance of the PEC/N layer, growth mechanism and diffusion process during PEC/N treatment was investigated. The thickness of the PEC/N layer grew to 48[Formula: see text][Formula: see text]m for 10[Formula: see text]min treatment and the growth of the saturation layer met the parabolic law. The highest microhardness of the surface was up to 811 HV, which was 5 times of that of iron substrate. The PEC/N layer consisted of [Formula: see text]-Fe, Fe[Formula: see text]N, Fe4N, Fe3C, Fe5C2 phases and a little FeO phase. The wear rate of the PEC/N layer reduced by five-sixes comparing with the iron substrate and the surface of the wear track was much smoother. The temperature close to the surface during PEC/N fitted by the tested temperature values inside the sample was 801∘C (1074[Formula: see text]K), and the combination diffusion rate of C and N into pure iron during PET at 360[Formula: see text]V reached [Formula: see text][Formula: see text]m2/s. The electron temperature fluctuates between 3000[Formula: see text]K and 8000[Formula: see text]K. The antifriction PEC/N layer displayed a very good wear resistance and the higher diffusion rate makes plasma electrolytic carbonitriding a very effective technique for surface modification of pure iron.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献