WEAR PROPERTIES AND MICROSTRUCTURE OF WC–10Co–4Cr POWDER COATING APPLIED TO CULTIVATOR BLADES VIA HVOF

Author:

DİLAY YUSUF1,GÜNEY BEKIR2,ÖZKAN ADEM1

Affiliation:

1. Department of Mechanical and Metal Technologies, Vocational School of Technical Sciences, Karamanoğlu Mehmetbey University, Karaman 70100, Turkey

2. Department of Motor Vehicles and Transportation Technologies, Vocational School of Technical Sciences, Karamanoğlu Mehmetbey University, Karaman 70100, Turkey

Abstract

Abrasion of cultivator equipment parts working in the soil causes serious losses if necessary precautions are not taken. The cultivator blades used to plow the soil in agricultural production wear out over time. In order to reduce this wear, the hardness and wear resistance of the material should be increased first. In this study, some of the 30MnB5 cultivator blades were heat-treated and some were coated with HVOF technique. The samples were obtained by plowing the soil at 15-cm working depth and 5.4-km[Formula: see text]h[Formula: see text] forward speed in two fields with different soil moisture contents. As a result of the experiments, abrasion losses and surface deformation of the blade material were observed and the effect of soil moisture on wear was also determined. After the treatment of 49.5[Formula: see text]daa (decare) with soil at 9% moisture content, the heat-treated 30MnB5 sample was worn 5.6 g, and the sample coated with WC–10Co–4Cr was worn 3.2[Formula: see text]g. Abrasions at 14% soil moisture were 6.3 g and 3.6[Formula: see text]g, respectively. It was observed that the coated material was less corroded than the heat-treated material. While the results obtained will contribute to the prevention of economic losses, the release of metals into the soil will also be prevented.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3