MULTI-RESPONSE OPTIMIZATION AND INVESTIGATION OF DRY SLIDING WEAR BEHAVIOR OF Al7075 SURFACE HYBRID NANOCOMPOSITE USING RESPONSE SURFACE METHODOLOGY

Author:

GOBIKANNAN S.1ORCID,GOPALAKANNAN S.1,SIVARAJ P.2

Affiliation:

1. Department of Mechanical Engineering, Adhiparasakthi Engineering College, Melmaruvathur, Tamilnadu 603319, India

2. Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India

Abstract

Aluminum alloy-based (Al7075) surface hybrid nanocomposite (SHNC) was fabricated by incorporating a reinforcement mixture of nano-aluminum oxide, micro-boron carbide, and graphite by utilizing friction stir processing (FSP). The graphite particle ratio was varied in the reinforcement mixture and its influence on the tribological properties of Al7075 SHNC was studied. In the metal matrix surface composite, the scanning electron microscope (SEM) and field emission SEM (FESEM) depict a homogeneity in the distribution of reinforcements. The nanocomposite’s wear behavior under dry sliding environments was investigated by adopting a central composite design (CCD) at three levels by response surface methodology (RSM). The designed experiments were executed in pin-on-disc (POD) apparatus, with load, sliding distance, and graphite ratio as input variables. The influence of applied factors and their interaction with the response were determined using an analysis of variance. To predict the wear characteristics, a mathematical model is formulated. Load is discovered to be a significant factor influencing the wear rate and friction coefficient. In addition, an increase in graphite% results in a lower wear rate for the given quantity of load and sliding distance. SEM image shows a severe wear pattern for higher load and lower graphite content. The optimum combination of the parameter obtained from multi-response optimization was load 10[Formula: see text]N, sliding distance 503.86[Formula: see text]m, and 14.99% graphite for reducing the wear rate and friction coefficient by applying the desirability function approach.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3