INFLUENCE OF INTERFACIAL LAYER THICKNESS AND SUBSTRATE ROUGHNESS ON ADHESION OF TiN COATINGS DEPOSITED AT LOW TEMPERATURES BY IBAD

Author:

KAKAS DAMIR1,TEREK PAL1,KOVACEVIC LAZAR1,MILETIC ALEKSANDAR1,SKORIC BRANKO1

Affiliation:

1. Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia

Abstract

Ion beam assisted deposition (IBAD) was applied to produce TiN coatings on carburized steel substrates. Low deposition temperatures (~50°C) were applied to prevent distortion and softening of previously heat-treated substrates. Mechanical properties of all studied coatings are comparable to those obtained at usually used high temperatures. In order to improve adhesion between TiN coating and substrate, an interfacial layer was prepared by ion beam mixing of Ti atoms and steel substrate. The adhesion strength evaluation revealed significant improvement compared to the coatings produced without the ion beam mixed interfacial layer. Adhesion increased with increase in thickness of the interfacial layer. Substrate roughness was varied systematically in order to determine its influence on adhesion strength. The research was conducted for a rarely studied domain of low roughness (Average roughness Ra below 50 nm). The results of scratch tests revealed improvement of adhesion with increase in substrate roughness. This adhesion trend is different from the one reported by other authors who used rougher substrates. Two groups of opposing mechanisms acting during adhesion testing were identified. It appears that there exists an optimum roughness below which adhesion strength increases, and above which it decreases with the increase in substrate roughness. Accordingly, applying an expensive surface finish does not have to be a guarantee for achieving the appropriate adhesion of TiN coatings deposited at low temperatures.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3