PREDICTION OF NANO-COATED TOOL WEAR USING BAT AND WHALE OPTIMIZATION ALGORITHMS

Author:

SELVARAJ SENTHIL KUMARAN1,KALIAPPAN JAYAKUMAR2,KUMAR S. RAMESH3,PRAKASH CHANDER4ORCID,BUDDHI DHARAM5,GUPTA LOVI RAJ4,HADIDI HAITHAM M.6

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India

2. School of Computer Science and Engineering, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India

3. School of Mechanical Engineering, SASTRA Deemed to be University, Thanjavur 613401, India

4. School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, India

5. Division of Research & Innovation, Uttaranchal University, Dehradun 248007, Uttarakhand, India

6. Department of Mechanical Engineering, College of Engineering, Jazan University, P. O. Box 706, Jazan 45142, Kingdom of Saudi Arabia

Abstract

In the industrial machining process, there have been major advances in near-net-shaped forming, which leads machining to be considered a significant modern phenomenon. Machining turns a huge number of metals into chips every year. This study aimed to determine the wear and mechanical properties of various cutting inserts. Polycrystalline diamond (PCD) and Ceramic Inserts were selected as coated inserts. It was discovered that tool wear at the cutting edge impacts various factors, including the amount of cutting forces created during machining; the surface finish of the workpiece is also compromised, resulting in reduced tool life. Owing to the frequent replacement of cutting tools, the decreased wear rate of cutting tools exponentially raises the costs that companies/machine shops would incur. After the second iteration, this insert began to develop crater wear, which resulted in a poor surface finish and high heat generation. However, the surface finish of this instrument was discovered to be the best during the first iteration. From the outcome, the PCD coated tool with feed speeds and low depth of cuts performed the efficient machining process. The surface finish is also accurate for PCD coated tool. The bat and whale algorithms’ optimization involved to find the best technical parameters to achieve the lowest possible error value based on rake and face wear. The bat and whale algorithms were used to determine the optimized rake and face wear values. The bat algorithm outperforms the whale algorithm in terms of wear value predictions.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3