MAGNETOHYDRODYNAMIC TERNARY HYBRID NANOFLUID FLOW OVER A STRETCHING SURFACE SUBJECT TO THERMAL CONVECTIVE AND ZERO MASS FLUX CONDITIONS

Author:

ABAS SYED ARSHAD1ORCID,ULLAH HAKEEM1ORCID,ISLAM SAEED1ORCID,FIZA MEHREEN1ORCID

Affiliation:

1. Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan

Abstract

Nanoparticles have the capability to augment the thermal conductivity of nanofluids. For the transmission of heat, the material’s low thermal conductivity is the key problem. Therefore, to increase the thermal conductivity, researchers mixed different nanoparticles in the base fluids. In this field of study, utilizing three different particles is the most recent strategy to form a ternary hybrid nanofluid that gives us better results in terms of heat transfer. The interaction of three different kinds of nanoparticles, i.e. copper, alumina and silver, is considered with water serving as the base fluid to form a ternary hybrid nanofluid. The paper explores the behavior of ternary hybrid nanofluids on heat and mass transportation phenomena of the two-dimensional magnetohydrodynamic (MHD) micropolar flow across a porous extending surface with zero mass flux and convective conditions. The Brownian motion, thermal radiation, heat source and sink, and joule heating are taken into consideration in the temperature equation. The chemical reaction is incorporated into the concentration equation. Appropriate similarity transformations are used to transform the system of partial differential equations (PDEs) to a coupled system of ordinary differential equations (ODEs). The homotopy analysis method (HAM) is used to solve the system of the flow equations. The effects of the nanoparticle’s volume fractions and other different physical parameters on the surface drag force, Nusselt number, velocities, microrotation, temperature and concentration profiles are scrutinized through figures and tables. The outcomes of the present investigation show that the heat transfer rate is augmented with the increasing value of thermophoresis parameter. The magnetic field has augmented temperature while the opposite result is seen in velocity and microrotation profiles. With the escalating values of thermophoresis parameter, the concentration and temperature of ternary hybrid nanofluids are boosted while the increasing Brownian and chemical reaction parameters have decreased the concentration profile. The surface friction coefficient exhibited by the ternary hybrid nanofluid is higher than hybrid and conventional nanofluids.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3