HIGH-TEMPERATURE FRICTION AND WEAR BEHAVIOR OF A NI-BASED VALVE ALLOY

Author:

ZHU ZHI-YUAN1,CHEN JIA-HUAN1,CAI YUAN-FEI1,LI JIAN-QIANG1

Affiliation:

1. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China

Abstract

This study explored the friction and wear behavior of a Ni-based exhaust valve at high temperatures. Nickel-based superalloy was used with two types of processing states: the original forged sample and the sample under the standard T1 heat treatment. At room temperature and a loading force of 10[Formula: see text]N, the average friction coefficient of the T1 heat-treated specimen is 0.61, which was lower than that of the forged sample (0.78). The wear rate of this specimen was also lower than that of the forged sample at the same temperature and loading force. Thus, T1 heat treatment can significantly improve the wear resistance of the alloy because of [Formula: see text] phase and carbides. The wear rate was the minimum at 550C and increased again at 750C dominated by the formation and flake-off of the oxide film.

Funder

the financial support of Science and Technology Program of Jiangsu Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3